
4. NON-MEASURABLE SETS

We have not yet shown the necessity for σ-fields. Restrict attention to ([0,1],F ,m) where F is either (i) B , the
Borel σ-algebra or (ii) B the possibly larger σ-algebra of Lebesgue measurable sets (as defined by Caratheodary).
This consists of two distinct issues.

(1) Showing that B (hence B) does not contain all subsets of [0,1].
(2) Showing that it is not possible at all to define a p.m. P on the σ-field of all subsets so that P[a,b] = b− a

for all 0 ≤ a ≤ b ≤ 1. In other words, one cannot consistently extend m from B (on which it is uniquely
determined by the condition m[a,b] = b−a) to a p.m. P on the σ-algebra of all subsets.

(1) B does not contain all subsets of [0,1]: We shall need the following ‘translation invariance property’ of m on
B .

Exercise 20. For any A ⊂ [0,1] and any x ∈ [0,1], m(A + x) = m(A), where A + x := {y + x(mod 1) : y ∈ A} (eg:
[0.4,0.9]+0.2 = [0,0.1]∪ [0.6,1]). Show that for any A ∈ B and x ∈ [0,1] that A+x ∈ B and that m(A+x) = m(A).

Now we construct a subset A ⊂ [0,1] and countably (infinitely) many xk ∈ [0,1] such that the sets A + xk are
pairwise disjoint and ∪k(A + xk) is the whole of [0,1]. Then, if A were in B , by the exercise A + xk would have the
same probability as A. But ∑m(A+ xk) must be equal to m[0,1] = 1, which is impossible! Hence A /∈ B .

How to construct such a set A and {xk}? Define an equivalence relation on [0,1] by x∼ y if x− y ∈Q (check that
this is indeed an equivalence relation). Then, [0,1] splits into pairwise disjoint equivalence classes whose union is
the whole of [0,1].

Invoke axiom of choice to get a set A that has exactly one point from each equivalence class. Consider A + r,
r ∈ Q∩ [0,1). If A + r and A + s intersect then we get an x ∈ [0,1] such that x = y + r = z + s (mod 1) for some
y,z ∈ A. This implies that y− z = r− s (mod 1) and hence that y ∼ z. So we must have y = z (as A has only one
element from each equivalence class) and that forces r = s (why?). Thus A + r, r ∈ Q∩ [0,1) are pairwise disjoint.
Further given x ∈ [0,1], there is a y ∈ A belonging to the [[x]]. Therefore x ∈ A + r where r = y− x or y− x + 1.
Thus we have constructed the set A whose countably many translates A + r, r ∈ Q∩ [0,1) are pairwise disjoint and
exhaustive! This answers question (1).

Remark 21. There is a theorem to the effect that the axiom of choice is necessary to show the existence of a non-
measurable set (as an aside, we should perhaps not have used the word ‘construct’ given that we invoke the axiom
of choice).

(2) m does not extend to all subsets: The proof above shows in fact that m cannot be extended to a translation
invariant p.m. on all subsets. If we do not require translation invariance for the extended measure, the question
becomes more difficult.

Note that there do exist probability measures on the σ-algebra of all subsets of [0,1], so one cannot say that there
are no measures on all subsets. For example, define Q(A) = 1 if 0.4 ∈ A and Q(A) = 0 otherwise. Then Q is a p.m.
on the space of all subsets of [0,1]. Q is a discrete p.m. in hiding! If we exclude such measures, then it is true
that some subsets have to be omitted to define a p.m. You may find the proof for the following general theorem in
Billingsley, p. 46 (uses axiom of choice and continuum hypothesis).

Fact 22. There is no p.m. on the σ-algebra of all subsets of [0,1] that gives zero probability to singletons.

Say that x is an atom of P if P({x}) > 0 and that P is purely atomic if ∑atoms P({x}) = 1. The above fact says
that if P is defined on the σ-algebra of all subsets of [0,1], then P must be have atoms. It is not hard to see that in fact
P must be purely atomic. To see this let Q(A) = P(A)−∑x∈A P({x}). Then Q is a non-negative measure without
atoms. If Q is not identically zero, then with c = Q([0,1])−1, we see that cQ is a p.m. without atoms, and defined
on all subsets of [0,1], contradicting the stated fact.

Remark 23. This last manipulation is often useful and shows that we can write any probability measure as a convex
combination of a purely atomic p.m. and a completely nonatomic p.m.

(3) Finitely additive measures If we relax countable additivity, strange things happen. For example, there does
exist a translation invariant (µ(A + x) = µ(A) for all A ⊂ [0,1], x ∈ [0,1], in particular, µ(I) = |I|) finitely additive
(µ(A∪B) = µ(A)+ µ(B) for all A,B disjoint) p.m. defined on all subsets of [0,1]! In higher dimensions, even this
fails, as shown by the mind-boggling
Banach-Tarski “paradox”: The unit ball in R3 can be divided into finitely many (five, in fact) disjoint pieces and
rearranged (only translating and rotating each piece) into a ball of twice the original radius!!
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5. RANDOM VARIABLES

Definition 24. Let (Ωi,Fi,Pi), i = 1,2, be two probability spaces. A function T : Ω1 → Ω2 is called an Ω2-valued
random variable if T−1A ∈ F1 for any A ∈ F2. Here T−1(A) := {ω ∈Ω1 : T (ω) ∈ A} for any A⊂Ω2.

Important cases are when Ω2 = R and F2 = B(R) (we just say “random variable”) or Ω2 = Rd and F2 = B(Rd)
(“random vector”). When Ω2 = C[0,1] with F2 its Borel sigma algebra (under the sup-norm metric), T is called
a “stochastic process”. When Ω2 is itself the space of all locally finite countable subsets of Rd (with Borel sigma
algebra in an appropriate metric) , we call T a “point process”. In genetics or population biology one looks at
genealogies, and then we have tree-valued random variables etc. etc.

Remark 25. Some remarks.
(1) If T : Ω1 → Ω2 is any function, then given a σ-algebra G on Ω2, the “pull-back” {T−1A : A ∈ G} is the

smallest σ-algebra on Ω1 w.r.t. which T is measurable (if we fix G on Ω2) . Conversely, given a σ-algebra F
on Ω1, the “push-forward” {A⊂Ω2 : T−1A∈F } is the largest σ-algebra on Ω2 w.r.t. which T is measurable
(if we fix F on Ω1). These properties are simple consequences of the fact that T−1(A)c = T−1(Ac) and
T−1(∪An) = ∪nT−1(An).

(2) If S generates F2, i.e., σ(S) = F2, then it suffices to check that T−1A ∈ F1 for any A ∈ S.

Example 26. Consider ([0,1],B). Any continuous function T : [0,1]→ R is a random variable. This is because
T−1(open) = open and open sets generate B(R). Exercise: Show that T is measurable if it is any of the follow-
ing. (a) Lower semicontinuous, (b) Right continuous, (c) Non-decreasing, (d) Linear combination of measurable
functions, (e) limsup of a countable sequence of measurable functions. (a) supremum of a countable family of
measurable functions.

Push forward of a measure: If T : Ω1 → Ω2 is a random variable, and P is a p.m. on (Ω1,F1), then defining
Q(A) = P(T−1A), we get a p.m Q, on (Ω2,F2). Q, often denoted PT−1 is called the push-forward of P under T .

The reason why Q is a measure is that if An are pairwise disjoint, then T−1An are pairwise disjoint. However,
note that if Bn are pairwise disjoint in Ω1, then T (Bn) are in general not disjoint. This is why there is no “pull-back
measure” in general (unless T is one-one, in which case the pull-back is just the push-forward under T−1!)

6. BOREL PROBABILITY MEASURES ON EUCLIDEAN SPACES

Given a Borel p.m. µ on Rd , we define its cumulative distribution functions (CDF) to be Fµ(x1, . . . ,xd) =
µ((−∞,x1]× . . .× (−∞,xd ]). Then, by basic properties of probability measures, Fµ : Rd → [0,1] (i) is non-decreasing
in each co-ordinate, (ii) Fµ(x)→ 0 if maxi xi →−∞, Fµ(x)→ 1 if mini xi →+∞, (iii) Fµ is right continuous in each
co-ordinate.

Two natural questions. Given an F : Rd → [0,1] satisfying (i)-(iii), is there necessarily a Borel p.m. with F as its
CDF? If yes, is it unique?

If µ and ν both have CDF F , then for any rectangle R = (a1,b1]× . . .× (ad ,bd ], µ(R) = ν(R) because they are
both determined by F . Since these rectangles form a π-system that generate the Borel σ-algebra, µ = ν on B .

What about existence of a p.m. with CDF equal to F? For simplicity take d = 1. One boring way is to define
µ(a,b] = F(b)− F(a) and then go through Caratheodary construction. But all the hard work has been done in
construction of Lebesgue measure, so no need to repeat it!

Consider the probability space ((0,1),B,m) and define the function T : (0,1)→R by T (u) := inf{x : F(x)≥ u}.
When F is strictly increasing and continuous, T is just the inverse of F . In general, T is non-decreasing, left
continuous. Most importantly, T (u) ≤ x if and only if F(x) ≥ u. Let µ := m T−1 be the push-forward of the
Lebesgue measure under T . Then,

µ(−∞,x] = m{u : T (u)≤ x} = m{u : F(x)≥ u} = m(0,F(x)] = F(x).

Thus, we have produced a p.m. µ with CDF equal to F . Thus p.m.s on the line are in bijective correspondence with
functions satisfying (i)-(iii). Distribution functions (CDFs) are a useful but dispensable tool to study measures on
the line, because we have better intuition in working with functions than with measures.

Exercise 27. Do the same for Borel probability measures on Rd .
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